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A P P R O X I M A T E  S O L U T I O N  OF P L A N E  P R O B L E M S  

F O R  I D E A L  E L A S T O P L A S T I C  I N H O M O G E N E O U S  B O D I E S  

T. L. Zhakharova and D. D. Ivlev UDC 539.214;539.374 

The theory of plasticity of inhomogeneous bodies was described by Olszak et al. and by Grigor'ev in [1, 
2] in which the related bibliography is given. In the present paper, the algorithm of successive approximations 
for determination of a stress-strain state of bodies from an ideal elastoplastic material, which was elaborated 
by Ivlev and Ershov [3], is extended to the case of inhomogeneous bodies. 

The Mises yield condition for inhomogeneous bodies is formulated as the limiting value of the energy 
of elastic straining. As an example, we consider the biaxial tension of a thick plate weakened by a round hole. 

1. For the plane problem, we write the elastic potential for an elastic isotropic incompressible body in 
the form [4] 

1 a0) 2 + 4r~2], (1.1) w = ~ [ ( ~ -  

w h e r e  W is the elastic potential, G is the modulus of shear; crp, a0, and r ~  are the stress components in the 
polar coordinate system p0. It is evident that the quantity W determines the strain energy of the material. 

The material is assumed to be inhomogeneous: 

According to (1.1), we obtain 

G = G(p, 0). (1.2) 

e 1 e �9 1 
~p = ~-~(~p - ~ 0 ) ,  ~$ = -~p, ~ = ~ p 0 .  (1.3) 

e Here e~, e~, and ep0 are the elastic strains subject to the compatibility condition 

1 0 J 2aeO'~ 1 a2ep 0 %  2 a 2 
p 002 Op p OpO0 (p%o). (1.4) 

We assume [5] that the plastic state occurs when the strain energy reaches some constant value: 

1 4v2e] k = const. w = ~ [ ( ~  - ~o) 2 + = k 2, (1.5) 

In accordance with (1.2), we rewrite relation (1.5) in the form 

( ~  - ~ 0 )  2 + 4~0 - 8k2a(p,o)  = o. (1.6) 

By relation (1.6), the yield point depends on the character of inhomogeneity when era = 2 k ~  and 

ao = rpo = O. 
Regarding relation (1.6) as a plastic potential, we obtain 

O f  O f  p ~ O f  
~ = )~O~p' ~ = ~O-J~o' %0 = 20rpo' ~ >~ o, 
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P where eva, e~, and epo are the components of the plastic strain velocity. We write the modulus expression (1.2) 
a s  

c(p,o) = ~ ,"c.(p,o), 
n = O  

where g is a small parameter.  
The solution is constructed as the series 

(Tii ~ "-(") = ~ u i j  , 

Go = const, (1.7) 

n = 0  

Let us determine the first approximation. From (1.6)-(1.8), we have 

oo 

= ~ ; ,  . . . .  (1.8) 
r t = 0  

/'-5- 
0 (T O ,/9 I - (T~ = r  t/~-- (Tp- = 2qkv_G0, ap 

V ~ 0  
q = sign((T ~ - (T~), (1.9) 

where the superscript 0 refers to the "unperturbed"-state components and the prime refers to the "perturbed"- 

' Ov~0 10(T~ 2T~0 
ap - (T.__~ _ 0, + + ~ = 0 (1.10) 

state components. 
The equilibrium equations 

o(T'  1 04,  
Op.+ - - - +  p 00 

are satisfied assuming that [3] 

, 1 oqr ' 1 0":32r ' oq2r ' , 0 (1 o')r 

We find from (1.9) and (1.11) that 

02r ' 1 02r ' 1 0(I)' - r /k  GI. 
op2 p2 0o2 ~ -  

(1.11) 

(1.12) 

The general solution of Eq. (1.12) can be written as the sum of the solution of the homogeneous equation r 
and the particular solution of the nonhomogeneous equation r According to [3], 

q)~ = H01 + p2H02 + pcosO(H11 + H12 lnp) (1.13) 
oo 

+p y~ [H,~I cos(~m 2 -  l lnp)+ Hm2 sin( r ~ a  2 -  llnp)]cosmO. 
m = 2  

We present G1 as the expansion 
oo 

Cz = ~ fm(p) cosmO. (1.14) 
m = O  

We search for a particular solution of Eq. (1.12) with the right-hand side (1.14) in the form 

r = ~ Fm(p)cosmO. 
m = O  

Substituting expansions (1.14) and (1.15) into Eq. (1.12), we have 

ra2 - q k ~ / ~ f m  (p). F"(p)-  ~F'(e) + 7Fm(p)  = 2 

It follows from (1.16) that  

qk p2 dp] + qkPV~o~o [ / ln pfl(p) dp - ln p / fl(p) dp] 
P 

(1.15) 

(1.16> 
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m~ 2 1 [cos(~m-:~2- 1 In ?)/fro(p)sin(~-lln p)dp 

-sin(4m 2 -lln p) / fro(p)cos(~ -lln p)dp]. 
Using the general solution of Eq. (1.12), from (1.11) we obtain the relations for the stress components in the 
plastic region: 

I oo 
+ -  Z: [cos(~- 1 in p)((1-m')H.,, + Vrm-:~ - IH.,,) 
P m=2 

+ sin(~r~m 2 -  1 I n p ) ( - ~ m  2 -  1H=, + ( 1 -  m2)Hm2)]cosmO 

-qk [{~m2-1cos(~m2-11np)+sin(~m2-11np)}/fm(p)sin(~m2-11np)dp 

- { q m  2 - 1  sin(v/~m 2 -  l l np ) -  cos(~m2- 1 lnp)} f fro(p)cos(~m2- 1 lnp)dp]cosmO, 

.;P :'Ho2-17k~/-~[/fo(P)p dp-J- fo(P)] + T .OsO[H.2 -17'~r~ (/fl(p)d.-.fi(.))] 
+I ~'~ [cos(~In p)((l- mZ)Hm, + ~-'IH.~2)+sin(Vf--~m2-11np)(-~ZlH,~, 
Pro=2 

cos( ~- :n +(1-m2)Hm2)]cosmO-qk [{,vr~m2 - 1 I p) (1.17) 

+ sin(~m2- I lnp)}/fro(p) sin(~/~m2- 1 'np)dp- (yf--~m 2- I sin(~/~m 2 -i lnp) 

- cos(~/-~m 2 -  i lnp)} f f=(p)cos(~m 2 - llnp)dp-pfm(P)lcosmO, 

i [ 2 1 ~__,[m~m2_i(_Hmlsin(~m2_llnp) rS~ = sin.__._OOp H12 - 17k fl(p)dp + P,n=2 

~/-~o [ " ln p) f fm(p) sin( ~f-~m2 -1ln p)dp +Hm2 cos(~m 2 -  llnp))]sinmO- r/kin s m ( ~ m  2 -  1 

+ cos(~/m 2 -  llnp)/fro(p)cos(~m 2- llnp)dp] sin m0. 
The stresses in the elastic region are found from the nonhomogeneous biharmonic equation 

VV~" = ~ ( p ,  0), (:.t8) 

where the right-hand side is determined, according to (1.3), (1.4), (1.7), and (1.8), as follows: 

_ p ' (a  - a )  02a, r  a )  O:al p'el ( ~  _ ~0) 
Go Op 2 Go 00 ---7- + G---~- 

[2r oal 3r  o o 3 r  - a )  oal  (1.19) 
+ L Go N + ~ J  -~P (or~ - a~ + Go cOp " 
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Let us represent @ as the expansion 
oo 

= Y~ @m(p)cosmO. (1.20) 
m=0 

The solution of the homogeneous equation (1.18) is known [4]. The particular solution of Eq. (1.18) is 
found similarly to (1.15). Using the general solution (1.18) and the substitution (1.11), we obtain the relations 
for the stress components in the elastic region: 

,, ~ ,7[ -2fplnp~to(p)dp o'p = 2C01 + (2 In p + 1)C02 + C04 + "~ -- f Pq~o(P) dp 

1 fp3ff~O(p) dp] .~ - {2p~ll - ~12q -1~14}C0S0  +21np/pffJo(p)dp + 

r] l / p2~l(p)dP + 2~_~ / p4k~l(p)dp] cos 0 
oo 

+ y~. { -- ra(m -- l)pm-2Cml -- m(rn + 1)p-m-2Cm2 
m=2 

--(m + 1)(m -- 2)proem3 -- (m -t- 2)(m -- 1)p-mOrn4} cos raO 

+ rl P-m+lqtm(p) d p + m p - ' - 2 f  Pm+lqtm(p) dp 

- ( m -  2)p m f p-m-lqlm(p) dp - ( m  + 2)p -m f pra-lt~m(p) dp] cos m0, 

cr~e = 2C01-l-(21np+3)Co2-~Co4+~[/pd2o(p)dp-2/plnpff2o(p)dp 

1 {6pC11 -I- p~Cl2 q- ~C14 } 0 +2'np/pq4o(p)dp--~/p3~Jo(p)dp] + cos 

' co .0  q-~[3-~ f ff11(p)dl~-; f192ffjl(p)dlg-~p3 
oo 

+ y~ {m(m-  1)pm-2cml + m(m + 1)p-m-2Cm2 
rn=2 

+(m + 1)(m + 2)pmCm3 + ( -m + X)(-m + 2)p-mCm4}CosmO (1.21) 

+~m[-mpm-2f p-m+l~m(p) dp-mp-m-2f pm+l~m(p)dp 

-~-(m + 2)p m / p-m-l~m(p) dp - ( - m  -~- 2)p -m / pm-lffJm(p) dp] cos m0, 

zoO= 2 p C l l -  C12q- C14 s i n O + ~  P p2qll(p)dp 

1 /  ] 
}P m2 +'~p3 p4qll(p) dp s in0+  ~ {m(m-1)pm-2Cml-m(m+ l" -m-2c 

m=2 

,7 f de +m(ra + 1)pmCm3 - m(m - 1)p-mCm4}sinmO + -~[- pro--2 

mO. 
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Fig. 1 

The radius of plasticity is determined from the conjugation condition [3] 

~ ,1 
a~ + -'~-p Psi = 0 for p = 1. (1.22) 

2. Let us consider an infinite plane with a round hole of radius a which is stretched at infinity by 
two mutually perpendicular tensile stresses pl and p2, the normal pressure p0 (see Fig. 1) acting on the hole 
contour. For an ideal isotropic elastoplastic body, this problem was considered by Galin [6]. 

We determine the solution near a certain "unperturbed" state by the small-parameter method. As the 
parameter, we use the quanti ty  g = (Pl - p 2 ) / 2 k .  

Below, all quantities that  have the dimension of stress will be referred to the yield point k, and the 
quantities that  have the dimension of length will be referred to the radius of the plastic "unperturbed"-state 
zone ros. We denote a a = a t / k ,  ~'pO = a'ro/k, p = r /ro~,  a = a / ros ,  and qi = p i / k ,  where i = 0, 1, and 2. For 
the nondimensional quantities a o / k  and G / k ,  we use the former designations a0 and G. 

For 0 ~< 6 < 1, the plate is in an elastoplastic state. We need to determine the stress-strain state of the 
plate and the boundary between the elastic and plastic zones. 

According to [3], the linearized boundary conditions are of the form 

a~ 0r = q -  6cos20, a ~  'e = q + 6cos20, ~.po~e = 6sin20, q = (q, + q2)/2 (2.1) 

at infinity and 

aa v = -q0, 7-v0 = 0 for p = cr (2.2) 

on the hole contour. 
Let us consider a zero approximation, i.e., the limiting case where 6 = 0. As the "unperturbed" state, 

we choose the axisymmetric  state of the plate with a hole with radius a whose contour is under the normal 
pressure p0 and under the uniform pressure p = pl = p2 at infinity. The solution of this elastoplastic problem 
is known [3] and is as follows: 

cro ~ = -qo + 2'/ln(p/(x), cre ~ = -qo + 2,/[1 + ln(p/~)], 5~ = O; (2.3) 

0e f l0e : a ,  = q -- , / /p2,  = q + f l ip2,  ~.po~ O. (2.4) 

In this case, the boundary between the elastic and plastic zones will be a circumference with radius r0s = 
aexp [(Iq0 - q l -  1)/2]. In the general form, the plastic and elastic solutions are determined by formulas (1.17) 
and (1 .21) .  

On the hole contour, we have 

= = 0 f o r  

According to [3], the conjugation conditions take the form 
tpp te Ip 1r 

= ~p, ~o = ZoO 

p = 4 .  (2.5) 

for p = 1. (2.6) 
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According to (2.1), at infinity 
le at, = -~cos20, r~ = ~sin20 for p = oo. (2.7) 

Satisfying conditions (2.5)-(2.7), from (1.17) and (1.21) we obtain the relations for the stress components in 
the plastic zone: 

a~ = - fo(P) dp - (v/3cos(v~lnp) +sin(v~lnp)) f2(p)sin(v/'31np)dp 
P o, 

P 

- (  ~ sin(v~ In p) - cos(v~ In p)) / f2(p) cos( v~ In p) dp] cos 20, 

,p fo p)dp+fo(p v~ cos(v~ln p)+sin(v/31n :) ) f A(p) sin(v~ln p) dp 0" 0 : - -  

P 

-(x/~ sin(x/3 In p) - cos(V~ In p)) f f2(P) cos(V~ In p) dp + Pf2(P)] cos 20, (2.8) 

: ] ] f2(p) s i n ( V ~ 2  2 r ~ ] = - p  sin(v/31np) lnp)dp+cos(v~lnp) f2(p)cos(v'~lnp)dp sin20. 
ot ot 

The relations for the stress components in the elastic zone are of the form 
P P P 

te C o 4  1 ~ = p2 +'4[-/(p+2pInp)k~O(p)dp+2Inp/pff20(p)dp+l fp3~O(p)dp] 
oo oo P ~  

p~4 p~2 1 ~2(P) dp+ 1 " 2 fpqt2(p)dPl)cos20, +(-,- , 

P P P co, 1[/ ] 
-7+ f oo oo P s  

+(1 + p~4-C22 + 1 [ _  ~2(#'p dp_l_fi /p3k~2(p)dp + 2p2f ---~dp])~2(P) cos 20, 
oo oo oo 

r00,e = _ C22 - ~0242 + gl --r P P oo 3ql2(p)dp+p oo-- -~dP-  pql2(p)dp sin 20, (2.9) 

V[~o~o:f~ Co4 = - P 4 (p3 _ P __ 2pin p)qgo(p) dp, 
1 

1 1 7 ( 3  p~3) : _ p3 qg2(p) dp 1 1 C22 = -~+"~ P - ~ f2(p)sin(v~lnp)dp+ ~ f2(p)cos(v'31np)dp, 
1 

C24 = --1 + "~1" f ( p  + p31 P2)qJ2(p)dp+ f2(p)sin(v~Inp)dp x/2Go~ J [ f2(p)cos(V~Inp)dp. 
1 

From (2.3), (2.4), (2.8), (2.9), and the conjugation condition (1.22), we find the radius of the plastic 
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zone: 

, ~ 1 / f o ( P ) d p + l  -4 1 [ 1 ~ ( ~  3~. ps = plnpqto(p)dp+ f0(1)+ 1+  p3}:~'2(p) dp 
ot I 1 

1 

+ - ~ o  ! f2(p)cos(V~lnp)dp + l f2(l)] cos20. (2.10) 

The particular function of the inhomogeneity is chosen as follows: 

G1 = )'g + cos 20, A, B =const ,  (2.11 

where G1, .4, and B are referred to the yield point k. The character of behavior of the inhomogeneity (2.11 
is determined from the requirement of convergence of the integrals (2.8)-(2.10). The inhomogeneity can be 
arbitrary to the finite limit p0. If the inhomogeneity is specified in the form (2.11), the relation for the radius 
of the plastic zone takes the following form, according to (1.14), (1.19), (1.20), (2.10), and (2.11): 

A A ~'~o~o 35A A [ B 2B f2-  507B 
P's= 4 ]-0 + l - ~ 0 + l - - ~ s +  1 +  4 i9V~00 + 560G0 

B ,f2-2 cos(v/~ln - x/~'sin(v~ln c~))] cosZ& +3-~4  V G0 (4 a) (2.12) 

It follows from (2.12) that the effect of the inhomogeneity, which is characterized by the quantities A and B 
in (2.11), depends on the modulus of shear Go and on the parameter with radius c~. Note that the smaller the 
Go and a, the greater the p~. For A = B = 0, the results of [3] hold true. 

Note that material inhomogeneity leads to a change in the stress state in both the plastic (2.8) and 
elastic (2.9) zones. The displacements can be found according to [3, 7], and the spatial state can be determined 
according to [8]. 
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